

Subcategory: 2000 Series Aluminum Alloy; Aluminum Alloy; Metal; Nonferrous Metal

Close Analogs:

Composition Notes:

A $\mathrm{Zr}+$ Ti limit of 0.20 percent maximum may be used with this alloy designation for extruded and forged products only, but only when the supplier or producer and the purchaser have mutually so agreed.
Agreement may be indicated, for example, by reference to a standard, by letter, by order note, or other means which allow the $\mathrm{Zr}+\mathrm{Ti}$ limit.
Aluminum content reported is calculated as remainder.
Composition information provided by the Aluminum Association and is not for design.
Key Words: Aluminium 2024-O; UNS A92024; ISO AICu4Mg1; NF A-U4G1 (France); DIN AICuMg2; AA2024-O, ASME SB211; CSA CG42 (Canada)

Component	Wt. \%	Component	Wt. \%	Component	Wt. \%
Al	$90.7-94.7$	Mg	$1.2-1.8$	Si	Max 0.5
Cr	$\mathrm{Max} \mathrm{0.1}$	Mn	$0.3-0.9$	Ti	Max 0.15
Cu	$3.8-4.9$	Other, each $\operatorname{Max} 0.05$	Zn	Max 0.25	
Fe	Max 0.5	Other, total	Max 0.15		

Material Notes:

General 2024 characteristics and uses (from Alcoa): Good machinability and surface finish capabilities. A high strength material of adequate workability. Has largely superceded 2017 for structural applications. Use of 2024-O not recommended unless subsequently heat treated.

Uses: Aircraft fittings, gears and shafts, bolts, clock parts, computer parts, couplings, fuse parts, hydraulic valve bodies, missile parts, munitions, nuts, pistons, rectifier parts, worm gears, fastening devices, veterinary and orthopedic equipment, structures.

Data points with the AA note have been provided by the Aluminum Association, Inc. and are NOT FOR DESIGN.

Physical Properties

Density

Mechanical Properties

Hardness, Brinell	47	47	AA; Typical; 500 g load; 10 mm ball
Ultimate Tensile Strength	186 MPa	27000 psi	AA; Typical
Tensile Yield Strength	75.8 MPa	11000 psi	AA; Typical
Elongation at Break	20\%	20 \%	AA; Typical; 1/16 in. (1.6 mm) Thickness
Elongation at Break	22 \%	22 \%	AA; Typical; 1/2 in. (12.7 mm) Diameter
Modulus of Elasticity	73.1 GPa	10600 ksi	AA; Typical; Average of tension and compression. Compression modulus is about 2% greater than tensile modulus.
Ultimate Bearing Strength	345 MPa	50000 psi	Edge distance/pin diameter = 2.0
Bearing Yield Strength	131 MPa	19000 psi	Edge distance/pin diameter = 2.0
Poisson's Ratio	0.33	0.33	
Fatigue Strength	89.6 MPa	13000 psi	AA; 500,000,000 cycles completely reversed stress; RR Moore machine/specimen
Machinability	30 \%	30 \%	0-100 Scale of Aluminum Alloys
Shear Modulus	28 GPa	4060 ksi	
Shear Strength	124 MPa	18000 psi	AA; Typical

Electrical Properties

Electrical Resistivity $\quad 3.49 \mathrm{e}-006 \mathrm{ohm}-\mathrm{cm} \quad 3.49 \mathrm{e}-006 \mathrm{ohm}-\mathrm{cm}$

Thermal Properties

CTE, linear $68^{\circ} \mathrm{F}$	$\underline{23.2} \mathrm{\mu m} / \mathrm{m}-{ }^{\circ} \mathrm{C}$	12.9 [$\mathrm{in} / \mathrm{in}-{ }^{\circ} \mathrm{F}$	AA; Typical; Average over 68-212${ }^{\circ} \mathrm{F}$ range.
CTE, linear $250^{\circ} \mathrm{C}$	$\underline{24.7} \mu \mathrm{~m} / \mathrm{m}-{ }^{\circ} \mathrm{C}$	13.7 M $\mathrm{in} / \mathrm{in}$ - ${ }^{\text {F }}$ F	Average over the range $20-300^{\circ} \mathrm{C}$
Specific Heat Capacity	$0.875 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$	0.209 BTU/b-ºF	
Thermal Conductivity	$193 \mathrm{~W} / \mathrm{m}-\mathrm{K}$	BTU-in/hr-ftro ${ }^{\circ} \mathrm{F}$	AA; Typical at $77{ }^{\circ} \mathrm{F}$
Melting Point	$502-638{ }^{\circ} \mathrm{C}$	935-1180 ${ }^{\circ} \mathrm{F}$	AA; Typical range based on typical composition for wrought products $1 / 4$ inch thickness or greater. Eutectic melting is not eliminated by homogenization.
Solidus	$502{ }^{\circ} \mathrm{C}$	$935{ }^{\circ} \mathrm{F}$	AA; Typical
Liquidus	$638^{\circ} \mathrm{C}$	$1180^{\circ} \mathrm{F}$	AA; Typical
Processing Properties			
Annealing Temperature	$413^{\circ} \mathrm{C}$	$775{ }^{\circ} \mathrm{F}$	
Solution Temperature	$\underline{256}{ }^{\circ} \mathrm{C}$	$493{ }^{\circ} \mathrm{F}$	

References for this datasheet.
Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistant format. Users requiring more precise data for scientific or engineering calculations can click on the property value to see the original value as well as raw conversions to equivalent units. We advise that you only use the original value or one of its raw conversions in your calculations to minimize rounding error.

