

Aluminum 2024-T6

Subcategory: 2000 Series Aluminum Alloy; Aluminum Alloy; Metal; Nonferrous Metal

### **Close Analogs:**

### **Composition Notes:**

A Zr + Ti limit of 0.20 percent maximum may be used with this alloy designation for extruded and forged products only, but only when the supplier or producer and the purchaser have mutually so agreed. Agreement may be indicated, for example, by reference to a standard, by letter, by order note, or other means which allow the Zr + Ti limit.

Aluminum content reported is calculated as remainder.

Composition information provided by the Aluminum Association and is not for design.

Key Words: Aluminium 2024-T6; UNS A92024; ISO AlCu4Mg1; AA2024-T6

| Componen | t Wt. %     | Component    | Wt. %     | Componen | t Wt. %  |
|----------|-------------|--------------|-----------|----------|----------|
| Al       | 90.7 - 94.7 | Mg           | 1.2 - 1.8 | Si       | Max 0.5  |
| Cr       | Max 0.1     | Mn           | 0.3 - 0.9 | Ti       | Max 0.15 |
| Cu       | 3.8 - 4.9   | Other, each  | Max 0.05  | Zn       | Max 0.25 |
| Fe       | Max 0.5     | Other, total | Max 0.15  |          |          |

#### **Material Notes:**

Weldability = C; Stress Corrosion Cracking Resistance = B; General Corrosion Resistance = D (A = best; E = worst). Good machinability and surface finish capabilities. A high strength material of adequate workability. Has largely superceded 2017 for structural applications.

**Uses:** Aircraft fittings, gears and shafts, bolts, clock parts, computer parts, couplings, fuse parts, hydraulic valve bodies, missile parts, munitions, nuts, pistons, rectifier parts, worm gears, fastening devices, veterinary and orthopedic equipment, structures.

Some data provided by Alcoa.

Data points with the AA note have been provided by the Aluminum Association, Inc. and are NOT FOR DESIGN.

| Physical Properties | Metric    | English    | Comments    |
|---------------------|-----------|------------|-------------|
| Density             | 2.78 g/cc | 0.1 lb/in³ | AA; Typical |

## Mechanical Properties

| Hardness, Brinell          | 125                | 125              | 500 kg load/10 mm ball                                                     |
|----------------------------|--------------------|------------------|----------------------------------------------------------------------------|
| Hardness, Knoop            | 157                | 157              | Estimated from Brinell                                                     |
| Hardness, Rockwell A       | 48                 | 48               | Estimated from Brinell                                                     |
| Hardness, Rockwell B       | 78                 | 78               | Estimated from Brinell                                                     |
| Hardness, Vickers          | 142                | 142              | Estimated from Brinell                                                     |
| Tensile Strength, Ultimate | Min 427 MPa        | Min 61900 psi    |                                                                            |
| Tensile Strength, Yield    | <u>Min 345 MPa</u> | Min 50000 psi    |                                                                            |
| Elongation at Break        | <u>5 %</u>         | 5 %              |                                                                            |
| Modulus of Elasticity      | <u>72.4 GPa</u>    | 10500 ksi        | Estimated from other heat treatments.                                      |
| Poisson's Ratio            | 0.33               | 0.33             | Estimated from other heat treatments.                                      |
| Fatigue Strength           | <u>124 MPa</u>     | 18000 psi        | 500,000,000 cycles; completely reversed; R. R. Moore Machine and specimen. |
| Machinability              | <u>70 %</u>        | 70 %             | 0-100 Scale (A=90; B=70; C=50; D=30; E=10)                                 |
| Shear Modulus              | <u>27 GPa</u>      | 3920 ksi         | Estimated from similar Al alloys.                                          |
| Shear Strength             | <u>283 MPa</u>     | 41000 psi        |                                                                            |
| Electrical Properties      |                    |                  |                                                                            |
| Electrical Resistivity     | 4.49e-006 ohm-cm   | 4.49e-006 ohm-cm | AA: Typical at 68°F                                                        |

| Electrical Resistivity | 4.49e-006 ohm-cm | 4.49e-006 ohm-cm | AA; Typical at 68°F |
|------------------------|------------------|------------------|---------------------|
|------------------------|------------------|------------------|---------------------|

## **Thermal Properties**

| CTE, linear 68°F       | 23.2 μm/m-°C     | 12.9 μin/in-°F                     | AA; Typical; Average over 68-212°F range                                                                                                                 |
|------------------------|------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTE, linear 250°C      | 24.7 μm/m-°C     | 13.7 µin/in-°F                     | Average over the range 20-300°C                                                                                                                          |
| Specific Heat Capacity | 0.875 J/g-°C     | 0.209 BTU/lb-°F                    |                                                                                                                                                          |
| Thermal Conductivity   | <u>151 W/m-K</u> | 1050 BTU-in/hr-ft <sup>2</sup> -°F | AA; Typical at 77°F                                                                                                                                      |
| Melting Point          | 502 - 638 °C     | 935 - 1180 °F                      | AA; Typical range based on typical composition for wrought products 1/4 inch thickness or greater. Eutectic melting is not eliminated by homogenization. |
| Solidus                | <u>502 °C</u>    | 935 °F                             | AA; Typica                                                                                                                                               |
| Liquidus               | <u>638 °C</u>    | 1180 °F                            | AA; Typica                                                                                                                                               |

## **Processing Properties**

| Annealing Temperature | <u>413 °C</u> | 775 °F |                           |
|-----------------------|---------------|--------|---------------------------|
| Solution Temperature  | <u>256 °C</u> | 493 °F |                           |
| Aging Temperature     | <u>191 °C</u> | 375 °F | 8 to 16 hr at temperature |

# **References** for this datasheet.

| un | quiring more pred<br>lits. We advise tha | at you only use th | e original value or | calculations can conv | versions in your ca | ty value to see the<br>alculations to minin | original value as w<br>nize rounding error | vell as raw conversi | ons to equivalent |
|----|------------------------------------------|--------------------|---------------------|-----------------------|---------------------|---------------------------------------------|--------------------------------------------|----------------------|-------------------|
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |
|    |                                          |                    |                     |                       |                     |                                             |                                            |                      |                   |