

Subcategory: 2000 Series Aluminum Alloy; Aluminum Alloy; Metal; Nonferrous Metal

Close Analogs:

Composition Notes:

$\mathrm{A} \mathrm{Zr}+\mathrm{Ti}$ limit of 0.20 percent maximum may be used with this alloy designation for extruded and forged products only, but only when the supplier or producer and the purchaser have mutually so agreed.
Agreement may be indicated, for example, by reference to a standard, by letter, by order note, or other means which allow the $\mathrm{Zr}+\mathrm{Ti}$ limit.
Aluminum content reported is calculated as remainder.
Composition information provided by the Aluminum Association and is not for design.
Key Words: Aluminium 2124-T851; UNS A92124; QQ-A-250/29; ASTM B209; AMS 4101; AA2124-T851

Component	Wt. \%	Component	Wt. \%	Component	Wt. \%
Al	$91.2-94.7$	Mg	$1.2-1.8$	Si	Max 0.2
Cr	$\mathrm{Max} \mathrm{0.1}$	Mn	$0.3-0.9$	Ti	Max 0.15
Cu	$3.8-4.9$	Other, each	Max 0.05	Zn	Max 0.25
Fe	Max 0.3	Other, total	Max 0.15		

Material Notes:

Data points with the AA note have been provided by the Aluminum Association, Inc. and are NOT FOR DESIGN.

Physical Properties

Density
$2.78 \mathrm{~g} / \mathrm{cc}$
$0.1 \mathrm{lb} / \mathrm{in}^{3}$
AA; Typical

Mechanical Properties

Hardness, Brinell	128	128	500 kg load with 10 mm ball
Hardness, Knoop	161	161	Converted from Brinell Hardness Value
Hardness, Rockwell A	48.9	48.9	Converted from Brinell Hardness Value
Hardness, Rockwell B	79	79	Converted from Brinell Hardness Value
Hardness, Vickers	146	146	Converted from Brinell Hardness Value

Ultimate Tensile Strength	483 MPa	70000 psi	AA; Typical
Tensile Yield Strength	441 MPa	64000 psi	AA; Typical
Elongation at Break	8 \%	8 \%	AA; Typical; 1/2 in. (12.7 mm) Diameter
Modulus of Elasticity	73.1 GPa	10600 ksi	AA; Typical; Average of tension and compression. Compression modulus is about 2\% greater than tensile modulus.
Poisson's Ratio	0.33	0.33	Estimated from trends in similar Al alloys.
Fatigue Strength	125 MPa	18100 psi	500,000,000 Cycles
Fracture Toughness	$26 \mathrm{MPa}-\mathrm{m}^{1 / 2}$	23.7 ksi-in 1 ²	K(IC) in S-L Direction
Fracture Toughness	$26 \mathrm{MPa}-\mathrm{m}^{1 / 2}$	23.7 ksi-in 1 ¹2	K(IC) in T-L Direction
Fracture Toughness	$32 \mathrm{MPa}-\mathrm{m}^{1 / 2}$	29.1 ksi-in¹⁄2	$\mathrm{K}(\mathrm{IC})$ in L-T Direction
Machinability	70 \%	70 \%	0-100 Scale of Aluminum Alloys
Shear Modulus	27 GPa	3920 ksi	Estimated from similar Al alloys.
Shear Strength	295 MPa	42800 psi	

Electrical Properties

Electrical Resistivity

Thermal Properties

CTE, linear $68^{\circ} \mathrm{F}$	22.9 m $/ \mathrm{m}-{ }^{\circ} \mathrm{C}$	12.7 \% in/in- ${ }^{\circ} \mathrm{F}$	AA; Typical; Average over 68-2120\% range.
CTE, linear $250^{\circ} \mathrm{C}$	24.7 m $/ \mathrm{m}-{ }^{\circ} \mathrm{C}$	13.7 Hin/in- ${ }^{\circ} \mathrm{F}$	Average over the range $20-300^{\circ} \mathrm{C}$
Specific Heat Capacity	$0.882 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$	0.211 BTU/bb-º	
Thermal Conductivity	151 W/m-K	BTU-in/hr-ftr- ${ }^{\circ} \mathrm{F}$	AA; Typical at $77^{\circ} \mathrm{F}$
Melting Point	$502-638{ }^{\circ} \mathrm{C}$	935-1180 ${ }^{\circ} \mathrm{F}$	AA; Typical range based on typical composition for wrought products $1 / 4$ inch thickness or greater. Eutectic melting is not eliminated by homogenization.
Solidus	$502{ }^{\circ} \mathrm{C}$	$935{ }^{\circ} \mathrm{F}$	AA; Typical
Liquidus	$638{ }^{\circ} \mathrm{C}$	$1180{ }^{\circ} \mathrm{F}$	AA; Typical
Processing Properties			
Annealing Temperature	$413{ }^{\circ} \mathrm{C}$	$775{ }^{\circ} \mathrm{F}$	
Solution Temperature	$493{ }^{\circ} \mathrm{C}$	$920{ }^{\circ} \mathrm{F}$	
Aging Temperature	$\underline{191}{ }^{\circ} \mathrm{C}$	$375{ }^{\circ} \mathrm{F}$	

References for this datasheet.

