

Subcategory: Ferrous Metal; Heat Resisting; Metal; Stainless Steel; T 300 Series Stainless Steel
Close Analogs: UNS S30400; AMS 5501, 5513, 5560, 5565; ASME SA182, SA194 (8), SA213, SA240; ASTM A167, A182, A193, A194

Key Words: aisi304, aisi 304, T304, T 304, SUS304, SS304, 304SS, 304 SS, UNS S30400, AMS 5501, AMS 5513, AMS 5560, AMS 5565, AMS 5566, AMS 5567, AMS 5639, AMS 5697, ASME SA182, ASME SA194 (8), ASME SA213, ASME SA240, ASME SA249, ASME SA312, ASME SA320 (B8), ASME SA358, ASME SA376, ASME SA403, ASME SA409, ASME SA430, ASME SA479, ASME SA688, ASTM A167, ASTM A182, ASTM A193, ASTM A194, ASTM A666, FED QQ-S-763, MILSPEC MIL-S-5059, SAE 30304, DIN 1.4301, X5CrNi189, B.S. 304 S 15, EN 58E, PN 86020 (Poland), OH18N9, ISO 4954 X5CrNi189E, ISO 683/13 11, 18-8

Component

Wt. \%

C	Max 0.08
Cr	$18-20$
Fe	$66.345-74$
Mn	Max 2
Ni	$8-10.5$
P	Max 0.045
S	$\mathrm{Max} \mathrm{0.03}$
Si	$\operatorname{Max~1}$

Material Notes:

Austenitic Cr-Ni stainless steel. Better corrosion resistance than Type 302. High ductility, excellent drawing, forming, and spinning properties. Essentially non-magnetic, becomes slightly magnetic when cold worked. Low carbon content means less carbide precipitation in the heat-affected zone during welding and a lower susceptibility to intergranular corrosion.

Applications: beer kegs, bellows, chemical equipment, coal hopper linings, cooking equipment, cooling coils, cryogenic vessels, dairy equipment, evaporators, flatware utensils, feedwater tubing, flexible metal hose, food processing equipment, hospital surgical equipment, hypodermic needles, kitchen sinks, marine equipment and fasteners, nuclear vessels, oil well filter screens, refrigeration equipment, paper industry, pots and pans, pressure vessels, sanitary fittings, valves, shipping drums, spinning, still tubes, textile dyeing equipment, tubing.

Corrosion Resistance: resists most oxidizing acids and salt spray.

Density

Mechanical Properties

Hardness, Brinell	123	123	Converted from Rockwell B hardness.	
Hardness, Knoop	138	138	Converted from Rockwell B hardness.	
Hardness, Rockwell B	70	70		
Hardness, Vickers	$\underline{505 \mathrm{MPa}}$	129	73200 psi	Converted from Rockwell B hardness.
Tensile Strength, Ultimate	$\underline{215 \mathrm{MPa}}$	31200 psi	at 0.2\% offset	
Tensile Strength, Yield	$\underline{70 \%}$	70%	in 50 mm	
Elongation at Break	$193-200 \mathrm{GPa}$	$28000-29000 \mathrm{ksi}$	0.29	
Modulus of Elasticity	0.29	$\underline{325 \mathrm{~J}}$	$240 \mathrm{ft}-\mathrm{lb}$	
Poisson's Ratio	$\underline{86 \mathrm{GPa}}$	12500 ksi		
Charpy Impact				
Shear Modulus				

Electrical Properties

Electrical Resistivity	7.2e-005 ohm-cm	7.2e-005 ohm-cm	at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) ; 1.16 \mathrm{E}-04$ at $650^{\circ} \mathrm{C}\left(1200^{\circ} \mathrm{F}\right)$
Magnetic Permeability	1.008	1.008	at RT

Thermal Properties

| CTE, linear $20^{\circ} \mathrm{C}$ | $\underline{17.3 \mu \mathrm{~m} / \mathrm{m}-{ }^{\circ} \mathrm{C}}$ | $9.61 \mu \mathrm{in} / \mathrm{in}-{ }^{\circ} \mathrm{F}$ | from from $0-100^{\circ} \mathrm{C}$ |
| :--- | ---: | ---: | ---: | ---: |
| CTE, linear $250^{\circ} \mathrm{C}$ | $\underline{17.8 \mu \mathrm{~m} / \mathrm{m}-{ }^{\circ} \mathrm{C}}$ | $9.89 \mu \mathrm{in} / \mathrm{in}-{ }^{\circ} \mathrm{F}$ | at $0-315^{\circ} \mathrm{C}\left(32-600^{\circ} \mathrm{F}\right)$ |
| CTE, linear $500^{\circ} \mathrm{C}$ | $\underline{18.7 \mu \mathrm{~m} / \mathrm{m}-{ }^{\circ} \mathrm{C}}$ | $10.4 \mu \mathrm{in} / \mathrm{in}-{ }^{\circ} \mathrm{F}$ | at $0-650^{\circ} \mathrm{C}$ |
| Specific Heat Capacity | $\underline{0.5 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}}$ | $0.12 \mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$ | from $0-100^{\circ} \mathrm{C}\left(32-212^{\circ} \mathrm{F}\right)$ |
| Thermal Conductivity | $\underline{16.2 \mathrm{~W} / \mathrm{m}-\mathrm{K}}$ | $112 \mathrm{BTU}-\mathrm{in} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$ | at $0-100^{\circ} \mathrm{C}, 21.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ at $500^{\circ} \mathrm{C}$ |
| Melting Point | $1400-1455^{\circ} \mathrm{C}$ | $2550-2650^{\circ} \mathrm{F}$ | |
| Solidus | $\underline{1400^{\circ} \mathrm{C}}$ | $2550{ }^{\circ} \mathrm{F}$ | |
| Liquidus | $\underline{14555^{\circ} \mathrm{C}}$ | $2650{ }^{\circ} \mathrm{F}$ | |

References for this datasheet.

Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistant format. Users requiring more precise data for scientific or engineering calculations can click on the property value to see the original value as well as raw conversions to equivalent units. We advise that you only use the original value or one of its raw conversions in your calculations to minimize rounding error.

